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Abstract. Based on the geometry of a Poingatisc, we construct a relativistic analogue of
guantum mechanical harmonic oscillator with a hyperbolic phase space. The Hamiltonian is
closely related to the ultraspherical operator and enjoys hypercontractivity. In the large-radius
and large-spin limit, we recover the ordinary harmonic oscillator.

1. A harmonic oscillator in Euclidean space

The quantum mechanical harmonic oscillator is essentially the Weyl representation of the
Euclidean motion group (or rather, its Lie algebra). In Fock—Bargmann model, it can be
described by the quadruple [1]

{H?(C), 9, 9%, H}

where

H?(C) = {f : C — C, holomorphic || f]1? := / f@Qf@n e @ dz dz < oo}
C

af(z) = a%f(z) 3" f(@) =zf(2) Hf(z) = Za%f(z)-
They satisfy the canonical commutation relations (CCR)
[0, 0] =1 [0, I1=0 [0*, I1]=0
and Wigner commutation relations
[0, H] =9 [0*, H] = —3*.

The HamiltonianH = 8*3 = z9/dz is diagonalized by the orthonormal bagig' /«/n! :
n > 0} and has spectrurf0, 1, 2, .. .}. It is remarkable that the semi-groge~'" : t > 0}
enjoys hypercontractivity property [11], i.e. for appropriatgprecisely, € < p/q), e/
is a contraction fromH?(C) to HY(C), where forp > 1, H?(C) is the Banach space of
holomorphicL? functions on{C, dv(z) = 7 ~te “dzdz}.

Hypercontractivity plays an imortant role in the study of the Bose field [9, 10], see
[3, 4] for surveys of this feature.
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2. A harmonic oscillator on the Poincai disc

We shall introduce a simple quantization of the Poigcdisc from the discrete series
of SU(L, 1) [2, 7]. Since SU1, 1) is locally isomorphic to S@, 1), the Lorentz group
which appears in the motion group inH12 spacetime of special relativity, the model thus
constructed will have a relativistic nature.

Let D, = {z € C : |z] < r} be the Poincd disc with radius; it can be viewed as
one sheet of the hyperbolic surfacerd and a Kahler manifold of hyperbolic nature. The
geometric symmetry group a, is

a b L(1/r O 1/r O
onfen(( 2)esaone (%)= )

=ASUl, At

where

I D A - W S _ (¥ 0
ownfo=(s D)t a=( )

The G, act onD, via the fractional linear transfomation

a b _az+b
¢ d Z_cz~|—d'

b\*/1/r O a b 1/r O
( d)(o —r)(c d>=<o —r)
is equivalent to
aa/r —rcc ab/r —rcd 1/r O
(ab/r —rcd bb/r —rdd) - < 0 —r>'
Whenr — oo, we havec =0, aa =1, dd = 1, but

b
(a ) z=ad 'z 4+bd™?

Note that

IS

[

0 d

henceG, contracts toE(C) (the Euclidean group of’) whenr — oo.
The G,-invariant measure o, is du,(z,z) = dzdz/(1 — zz/r?)?. For anyi > 1

a1 z\* _
durs(z,2)=—5 |1- 5 ) du(z,2)
Tr r

A—1 7\7?
= (1— ZZ) dzdz

Tr2 72

is a probability measure ol®,. Since ¢k, —> dv = 7 le ¥ dzdz wheni/r?> — 1

andr — oo, {D,, u,,} may be viewed as a hyperbolic deformation of the one dimensional

Gaussian spade”, v} which is the phase space of harmonic oscillator of one degree freedom.
Forp > 1, let

H}(D,) = {f : D, — C, holomorphic || f|; =/ If @17 duri(z,2) < oo}
D,
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then H/(D,) is a Banach space aan(D,) is a reproducing kernel Hilbert space with
kernelk; (z, w) = (1 — zw/r®)~*, i.e.

f(@ =/ fw)k,(z, w) du, (w, w) vV f € HA(D,).
D,

An orthonormal basis on(D,) is

_ IT(n+ A1) 2"
{en(z)— Wﬁ -7120}.

Let A > 1, and 2 be integer. The discrete series Gf is the following irreducible
projective unitary representation &f. (cf [7, 8]):

b
[7,,.(9) f1(2) = (—cz +a) " f(g '2) g= (Ccl d) € G, feHAD).

The Lie algebra ofG, is generated by

0 1\ _, i 0 1 0 i 1
X_=A A Xo=A ]A X, =A . A
1 0 0 —i —i 0

which are essentially Pauli matrices. They are exponentiated to one parameter subgroups
of G, as follows:

gx _( cosh rsinh)
~ \sinh/r cosh

& 0
g% — ( g en)

e‘X+—< cosh irsinh)
~ \ —isinbe/r cosh /°

The derived representation of the Lie algebragfinduced by the discrete series is

d
dTr,A (X—) = CT

d . 9
47, (X0) = 4 T (€)oo = (/\ + 2z>

d A 1,0 0
a7, (X4) = ETr,A(e,X+)|t:O = —I (rZ + 2722~ +r>.

Q = idT,;(X4+) is understood as the position observable ghd= id7,;(X_) as the
conjugate momentum observable. Let

A*—l(Q iP)—’\ + A—l(Q+iP)— 0
T2 DR T ~2 ~ oz

then A* and A are mutually adjoint onH2(D,) and can be interpreted as creation and
annihilation operators respectively. Set

P P Y. _
O rZZ r2Z 0z r 9z 0z
then

a2 , .
[An, ALl = 2 + sz [An, Nl=A. [A7,, Nl=-A7,.
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In analogy with{ H2(C), 0, 0*, H}, we may call{H?(D,), A, A},, N} the harmonic
oscillator onD,. The latter may be viewed as a relativistic analogue of the former, the
parameter playing the role of speed of light. Note that whild, ;, A}, } does not satisfy
the CCR,{A,;, A}, N} satisfies the Wigner commutation relations.

Let
Aod 1,02

Z— +

I‘])»=A>‘< A A= —5 Z
" R r27 9z  r27 9z2

then
1
H ;2" = —n(A+n—1z" n=0,1,....
r

H,, may be interpreted as a Hamiltonian. We shall show #at is closely related with
the ultraspherical operator

d2
dx?
on L2((—1, 1), v,), wherev, (dx) = (['(@+1)//7T(@+3)) (1—x2)*"¥2dx is a probability
measure on—1,1). Fora = 1, vi(dx) = (2/7)(1 — x*)¥?dx is the famous Wigner
semicircle law occurring in random matrices.

Let {Y®} be the ultraspherical (Gegenbauer) polynomials defined by the generating
function

d
1.2
L,=—(1—-x9 +(2a+1)xdx

o0
l—2xz+2z)% = Z Y (x)z" lz] < 1.
n=0

Then L, is diagonalized by{Y®} : L,Y® = n(n + 20)Y®. ConsequentlyH;; and
Lu—1,2 have the same spectrum. In the remainder of this section, wertakd, o =

(A —1)/2.
@z [FCORKFD) ey
{hk (x) = oIk 1 20) () k=0,1,...

Note that
constitutes an orthonormal basis fbf((—1, 1), v,) (cf [5] or [6]). Define the integral
transform

Bf(z) =/ L Pa(z, x) f(x)ve (dx) fel¥ (=11, v) zeD
(-11)

where
1 1—22
2 (A1 —2zx + z2)t1

is the Poisson kernel function (modulo the factgr/R) (see [6]).

Pa(Z,X) =

Theorem 1. B is a bijection fromL?((—1, 1), v,) onto H?(D;) (notea = (A — 1)/2).
Moreover

I UBAIN< IS VfeL*(=11),v)

and Bh® = /(k + «)/(k + 2a)e;, k =0,1,... . Hy, and L, are interwined bya, i.e.
B7'Hy; B = L,. Here|| - || denotes the norm oh?((—1, 1), v,) and H2(Dy).
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Proof. Utilizing z 9/dz acting on both sides of

1
T AT e = Yk(a)(x)zk
(1—2zx +z2) Xk:

leads to

Ol(ZZX — ZZZ) (@) k
= kY, "
(1 — 2zx 4 z2)a+l ; e (02

Adding a/(1 — 2zx + z2)* to both sides, we obtain
1-2z?
o
(1 _ ZZ)C + ZZ)a+l

= Z(k + a)Yk(“) (x)zx.
k
Hence

Pa(z,x) = \/}20[ Xk:(k + )Y (0

= ;za 2 kkfzo; Vk+ o)k + 20 ¥ (07
k

k + o
= Xk: /k - 20;}1,(( )(x)ex (2).

Noting that {1{*’} and {e;} constitute orthonormal bases 6f((—1, 1), v,) and H>(Dy),
respectively, the conclusion easily follows. O

Remark. B is reminiscent of the coherent state transform introduced by Bargmann [1]
in interwining the Schidinger and Fock models of the harmonic oscillator. ThoBgls

not unitary, its kernel is the Poisson kernel, which is widely used in complex analysis, in
particular in solving Dirichilet problems [6]; hence is quite natural from a mathematical
point of view.

3. Hypercontractivity

Fort > 0, let T, = eV, S, = e'H» be the semigroup generated By and H,,
respectively. Inspired by the Euclidean case [11], we may expectlthata contraction
from H/(D,) to H;(D,) whenever % < p/q. Unfortunately, we have not found a proof
at present. However, the particular cgge= 2, ¢ = 4 (which is usually enough for
applications [10]) can easily be proved as follows.

Theorem 2. If e < 2/4, thenT, : H?*(D,) — H}(D,) is a contraction, and the
maximizer can only be attained at constant functions. Similarly, #*¢”" < 2/4, then

S; Hf(D,) — H;‘(D,) is a contraction, and the maximizer can only be attained at constant
functions.

Proof. Clearly, T, f(z) = f(e'z). Note that

T+ ",
{en(z) - ern . n 2 O}
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is an orthonormal basis a#2(D,), if f € H2(D,) has the Fourier decomposition

o0

f) = Zanen(z)

n=0
then

||ﬂf||3=/ (T, f )T, £ (2)? dpr (2, 2)

-

00 2
= / ( Z e_(m-m)tamanem (2)e, (Z)> er,A (z,2)
D,

m,n=0

o0
= f Y et G, 4, aren (2)e (2)en(2)er(2) Ay (2, D)
D, m,n, j,k=0

— ie—zn Z T Tm+2)TG+A) T +a)TTk+2)\Y?
B mEIEEE miT () JICY)  nlT(Y) kT

=0 m+j=I
n+k=Il

T
Cd+2

i 21
= e 4

X

2

(T T+ TG +0)\"?
2 “’"“’(F(HA) TN RTINGS! )

=0 m+j=I
o I T(m+MCG+ 1)

<Y 2N Y > lama;l?
1=0 iy MU TALA +4) mtj=I
o o It 2

<57 (2 ) (2 o)
=0 m+j=1 """ m+j=lI

=I£13.

From the calculation, it is clear thdf, f|l4 = || f |2 iff f is a constant.
The second statement is proved similarly. O

4. The large-radius and large-spin limit

The following correspondences relate the harmonic oscillator on a Euclidean space with
that on a Poincér disc.
Letr — oo, A — oo andi/r? — 1, then

(1) b, — C,

(2) G, — E(C) (Euclidean motion group of),
(3) du, — dzdz (Lebesgue measure an),

(4) du,.,, — m~te *dzdz (Gaussian measure @),
(5) H(D,) — H*(C),

(6) A;p. —> 8, Ay, —> 3", Hp —> H=N.
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5. Discussion

In the construction of a harmonic oscillator on the Poiédadisc, two Hamiltonians naturally
arise: one iV = z 8/dz, which is formally the same as the free Hamiltonian of the ordinary
harmonic oscillator (though they act on different Hilbert spaces); the oth&f. jswhich

is closely related to the ultraspherical operator widely used in special function theory and
mathematical physics.

The Poincak disc is the simplest non-Euclidean space of hyperbolic nature, the radius
may be formally interpreted as a coupling constant (e.g. the speed of light). The parameter
A occurring in the discrete series of §1J1) is the spin. Thus, the model we constructed is
a two-parameter deformation of the ordinary harmonic oscillator and may serve as a simple
approximation for the description of certain interacting or relativistic quantum systems. The
limit »/r2 — 1 is like a non-relativistic limit.

The method can also be applied to other series representatians efg., the principal
series and complementary series [2, 7], and has a direct generalization to higher dimensions,
with the Poincag disc being replaced by the Hermitian symmetric space.
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