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Abstract. Based on the geometry of a Poincaré disc, we construct a relativistic analogue of
quantum mechanical harmonic oscillator with a hyperbolic phase space. The Hamiltonian is
closely related to the ultraspherical operator and enjoys hypercontractivity. In the large-radius
and large-spin limit, we recover the ordinary harmonic oscillator.

1. A harmonic oscillator in Euclidean space

The quantum mechanical harmonic oscillator is essentially the Weyl representation of the
Euclidean motion group (or rather, its Lie algebra). In Fock–Bargmann model, it can be
described by the quadruple [1]

{H 2(C), ∂, ∂∗, H }
where

H 2(C) =
{
f : C → C, holomorphic, ‖f ‖2 :=

∫
C

f (z)f (z)π−1e−zz dz dz <∞
}

∂f (z) = ∂

∂z
f (z) ∂∗f (z) = zf (z) Hf (z) = z ∂

∂z
f (z).

They satisfy the canonical commutation relations (CCR)

[∂, ∂∗] = I [∂, I ] = 0 [∂∗, I ] = 0

and Wigner commutation relations

[∂, H ] = ∂ [∂∗, H ] = −∂∗.
The HamiltonianH = ∂∗∂ = z∂/∂z is diagonalized by the orthonormal basis{zn/√n! :
n > 0} and has spectrum{0, 1, 2, . . .}. It is remarkable that the semi-group{e−tH : t > 0}
enjoys hypercontractivity property [11], i.e. for appropriatet (precisely, e−2t 6 p/q), e−tH

is a contraction fromHp(C) to Hq(C), where forp > 1, Hp(C) is the Banach space of
holomorphicLp functions on{C, dν(z) = π−1e−zzdzdz}.

Hypercontractivity plays an imortant role in the study of the Bose field [9, 10], see
[3, 4] for surveys of this feature.
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2. A harmonic oscillator on the Poincaŕe disc

We shall introduce a simple quantization of the Poincaré disc from the discrete series
of SU(1, 1) [2, 7]. Since SU(1, 1) is locally isomorphic to SO(2, 1), the Lorentz group
which appears in the motion group in 1+ 2 spacetime of special relativity, the model thus
constructed will have a relativistic nature.

Let Dr = {z ∈ C : |z| < r} be the Poincaré disc with radiusr; it can be viewed as
one sheet of the hyperbolic surface inR3 and a K̈ahler manifold of hyperbolic nature. The
geometric symmetry group ofDr is

Gr =
{
g =

(
a b

c d

)
∈ SL(2, C) : g∗

(
1/r 0

0 −r
)
g =

(
1/r 0

0 −r
)}

= ASU(1, 1)A−1

where

SU(1, 1) =
{
g =

(
α β

β α

)
: |α|2− |β|2 = 1

}
A =

(√
r 0

0 1/
√
r

)
.

TheGr act onDr via the fractional linear transfomation(
a b

c d

)
z = az + b

cz + d .

Note that (
a b

c d

)∗ ( 1/r 0

0 −r
)(

a b

c d

)
=
(

1/r 0

0 −r
)

is equivalent to(
aa/r − rcc ab/r − rcd
ab/r − rcd bb/r − rdd

)
=
(

1/r 0

0 −r
)
.

Whenr →∞, we havec = 0, aa = 1, dd = 1, but(
a b

0 d

)
z = ad−1z + bd−1

henceGr contracts toE(C) (the Euclidean group onC) whenr →∞.
TheGr -invariant measure onDr is dµr(z, z) = dzdz/(1− zz/r2)2. For anyλ > 1

dµr,λ(z, z) = λ− 1

πr2

(
1− zz

r2

)λ
dµr(z, z)

= λ− 1

πr2

(
1− zz

r2

)λ−2

dzdz

is a probability measure onDr . Since dµr,λ −→ dν = π−1e−zzdzdz when λ/r2 → 1
andr →∞, {Dr,µr,λ} may be viewed as a hyperbolic deformation of the one dimensional
Gaussian space{C, ν} which is the phase space of harmonic oscillator of one degree freedom.

For p > 1, let

H
p

λ (Dr) =
{
f : Dr → C, holomorphic, ‖f ‖pp =

∫
Dr

|f (z)|p dµr,λ(z, z) <∞
}
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thenHp

λ (Dr) is a Banach space andH 2
λ (Dr) is a reproducing kernel Hilbert space with

kernelkλ(z, w) = (1− zw/r2)−λ, i.e.

f (z) =
∫
Dr

f (w)kλ(z, w) dµr,λ(w,w) ∀ f ∈ H 2
λ (Dr).

An orthonormal basis ofH 2
λ (Dr) is{

en(z) =
√
0(n+ λ)
n!0(λ)

zn

rn
: n > 0

}
.

Let λ > 1, and 2λ be integer. The discrete series ofGr is the following irreducible
projective unitary representation ofGr (cf [7, 8]):

[Tr,λ(g)f ](z) = (−cz + a)−λf (g−1z) g =
(
a b

c d

)
∈ Gr f ∈ H 2

λ (Dr).

The Lie algebra ofGr is generated by

X− = A
(

0 1

1 0

)
A−1 X0 = A

(
i 0

0 −i

)
A−1 X+ = A

(
0 i

−i 0

)
A−1

which are essentially Pauli matrices. They are exponentiated to one parameter subgroups
of Gr as follows:

etX− =
(

cosht rsinht

sinht/r cosht

)

etX0 =
(

eit 0

0 e−it

)

etX+ =
(

cosht irsinht

−isinht/r cosht

)
.

The derived representation of the Lie algebra ofGr induced by the discrete series is

dTr,λ(X−) = d

dt
Tr,λ(e

tX−)|t=0 = λ

r
z + 1

r
z2 ∂

∂z
− r ∂

∂z

dTr,λ(X0) = d

dt
Tr,λ(e

tX0)|t=0 = −i

(
λ+ 2z

∂

∂z

)

dTr,λ(X+) = d

dt
Tr,λ(e

tX+)|t=0 = −i

(
λ

r
z + 1

r
z2 ∂

∂z
+ r ∂

∂z

)
.

Q = i dTr,λ(X+) is understood as the position observable andP = i dTr,λ(X−) as the
conjugate momentum observable. Let

A∗ = 1

2
(Q− iP) = λ

r
z + 1

r
z2 ∂

∂z
A = 1

2
(Q+ iP) = r ∂

∂z

then A∗ and A are mutually adjoint onH 2
λ (Dr) and can be interpreted as creation and

annihilation operators respectively. Set

A∗r,λ =̂
1

r
A∗ = λ

r2
z + 1

r2
z2 ∂

∂z
Ar,λ =̂ 1

r
A = ∂

∂z
N =̂ z ∂

∂z

then

[Ar,λ, A
∗
r,λ] =

λ

r2
+ 2

r2
N [Ar,λ, N ] = Ar,λ [A∗r,λ, N ] = −A∗r,λ.
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In analogy with{H 2(C), ∂, ∂∗, H }, we may call{H 2
λ (Dr), Ar,λ, A

∗
r,λ, N} the harmonic

oscillator onDr . The latter may be viewed as a relativistic analogue of the former, the
parameterr playing the role of speed of light. Note that while{Ar,λ, A∗r,λ} does not satisfy
the CCR,{Ar,λ, A∗r,λ, N} satisfies the Wigner commutation relations.

Let

Hr,λ = A∗r,λAr,λ =
λ

r2
z
∂

∂z
+ 1

r2
z2 ∂

2

∂z2

then

Hr,λz
n = 1

r2
n(λ+ n− 1)zn n = 0, 1, . . . .

Hr,λ may be interpreted as a Hamiltonian. We shall show thatHr,λ is closely related with
the ultraspherical operator

Lα = −(1− x2)
d2

dx2
+ (2α + 1)x

d

dx

onL2((−1, 1), να), whereνα(dx) =
(
0(α+1)/

√
π0(α+ 1

2)
)
(1−x2)α−1/2dx is a probability

measure on(−1, 1). For α = 1, ν1(dx) = (2/π)(1 − x2)1/2dx is the famous Wigner
semicircle law occurring in random matrices.

Let {Y (α)n } be the ultraspherical (Gegenbauer) polynomials defined by the generating
function

(1− 2xz + z2)−α =
∞∑
n=0

Y (α)n (x)zn |z| < 1.

Then Lα is diagonalized by{Y (α)n } : LαY (α)n = n(n + 2α)Y (α)n . ConsequentlyH1,λ and
L(λ−1)/2 have the same spectrum. In the remainder of this section, we taker = 1, α =
(λ− 1)/2.

Note that {
h
(α)
k (x) =̂

√
0(2α)k!(k + α)
α0(k + 2α)

Y
(α)
k (x) : k = 0, 1, . . .

}
constitutes an orthonormal basis forL2((−1, 1), νλ) (cf [5] or [6]). Define the integral
transform

Bf (z) =
∫
(−1,1)

pα(z, x)f (x)να(dx) f ∈ L2((−1, 1), νλ) z ∈ D1

where

pα(z, x) = 1√
2

1− z2

(1− 2zx + z2)α+1

is the Poisson kernel function (modulo the factor 1/
√

2) (see [6]).

Theorem 1. B is a bijection fromL2((−1, 1), να) onto H 2
λ (D1) (note α = (λ − 1)/2).

Moreover

1
2‖f ‖ 6 ‖Bf ‖ 6 ‖f ‖ ∀ f ∈ L2((−1, 1), να)

andBh(α)k =
√
(k + α)/(k + 2α)ek, k = 0, 1, . . . . H1,λ andLα are interwined byB, i.e.

B−1H1,λB = Lα. Here‖ · ‖ denotes the norm onL2((−1, 1), να) andH 2
λ (D1).
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Proof. Utilizing z ∂/∂z acting on both sides of

1

(1− 2zx + z2)α
=
∑
k

Y
(α)
k (x)zk

leads to

α(2zx − 2z2)

(1− 2zx + z2)α+1
=
∑
k

kY
(α)
k (x)zk.

Adding α/(1− 2zx + z2)α to both sides, we obtain

α
1− z2

(1− 2zx + z2)α+1
=
∑
k

(k + α)Y (α)k (x)zk.

Hence

pα(z, x) = 1√
2α

∑
k

(k + α)Y (α)k (x)zk

= 1√
2α

∑
k

√
k + α
k + 2α

√
(k + α)(k + 2α)Y (α)k (x)zk

=
∑
k

√
k + α
k + 2α

h
(α)
k (x)ek(z).

Noting that {h(α)k } and {ek} constitute orthonormal bases ofL2((−1, 1), να) andH 2
λ (D1),

respectively, the conclusion easily follows. �

Remark. B is reminiscent of the coherent state transform introduced by Bargmann [1]
in interwining the Schr̈odinger and Fock models of the harmonic oscillator. ThoughB is
not unitary, its kernel is the Poisson kernel, which is widely used in complex analysis, in
particular in solving Dirichilet problems [6]; hence is quite natural from a mathematical
point of view.

3. Hypercontractivity

For t > 0, let Tt = e−tN , St = e−tHr,λ be the semigroup generated byN and Hr,λ
respectively. Inspired by the Euclidean case [11], we may expect thatTt is a contraction
from H

p

λ (Dr) to Hq

λ (Dr) whenever e−2t 6 p/q. Unfortunately, we have not found a proof
at present. However, the particular casep = 2, q = 4 (which is usually enough for
applications [10]) can easily be proved as follows.

Theorem 2. If e−2t 6 2/4, then Tt : H 2
λ (Dr) → H 4

λ (Dr) is a contraction, and the
maximizer can only be attained at constant functions. Similarly, If e−2(λ/r2)t 6 2/4, then
St : H 2

λ (Dr)→ H 4
λ (Dr) is a contraction, and the maximizer can only be attained at constant

functions.

Proof. Clearly,Ttf (z) = f (e−t z). Note that{
en(z) =

√
0(n+ λ)
n!0(λ)

zn

rn
: n > 0

}
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is an orthonormal basis ofH 2
λ (Dr), if f ∈ H 2

λ (Dr) has the Fourier decomposition

f (z) =
∞∑
n=0

anen(z)

then

‖Ttf ‖4
4 =

∫
Dr

(Ttf (z)Ttf (z))
2 dµr,λ(z, z)

=
∫
Dr

( ∞∑
m,n=0

e−(m+n)tamanem(z)en(z)

)2

dµr,λ(z, z)

=
∫
Dr

∞∑
m,n,j,k=0

e−(m+n+j+k)t amajanakem(z)ej (z)en(z)ek(z) dµr,λ(z, z)

=
∞∑
l=0

e−2lt
∑
m+j=l
n+k=l

amajanak

(
0(m+ λ)
m!0(λ)

0(j + λ)
j !0(λ)

0(n+ λ)
n!0(λ)

0(k + λ)
k!0(λ)

)1/2

× l!0(λ)

0(l + λ)

=
∞∑
l=0

e−2t l

∣∣∣∣∣ ∑
m+j=l

amaj

(
l!0(λ)

0(l + λ)
0(m+ λ)
m!0(λ)

0(j + λ)
j !0(λ)

)1/2
∣∣∣∣∣
2

6
∞∑
l=0

2−l
( ∑
m+j=l

l!

m!j !

0(m+ λ)0(j + λ)
0(λ)0(l + λ)

)( ∑
m+j=l

|amaj |2
)

6
∞∑
l=0

2−l
( ∑
m+j=l

l!

m!j !

)( ∑
m+j=l

|amaj |2
)

= ‖f ‖4
2.

From the calculation, it is clear that‖Ttf ‖4 = ‖f ‖2 iff f is a constant.
The second statement is proved similarly. �

4. The large-radius and large-spin limit

The following correspondences relate the harmonic oscillator on a Euclidean space with
that on a Poincaré disc.

Let r →∞, λ→∞ andλ/r2→ 1, then

(1) Dr −→ C,
(2) Gr −→ E(C) (Euclidean motion group onC),
(3) dµr −→ dzdz (Lebesgue measure onC),
(4) dµr,λ −→ π−1e−zzdzdz (Gaussian measure onC),
(5) H 2

λ (Dr) −→ H 2(C),
(6) Ar,λ −→ ∂,A∗r,λ −→ ∂∗, Hr,λ −→ H = N .
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5. Discussion

In the construction of a harmonic oscillator on the Poincaré disc, two Hamiltonians naturally
arise: one isN = z ∂/∂z, which is formally the same as the free Hamiltonian of the ordinary
harmonic oscillator (though they act on different Hilbert spaces); the other isHr,λ which
is closely related to the ultraspherical operator widely used in special function theory and
mathematical physics.

The Poincaŕe disc is the simplest non-Euclidean space of hyperbolic nature, the radiusr

may be formally interpreted as a coupling constant (e.g. the speed of light). The parameter
λ occurring in the discrete series of SU(1, 1) is the spin. Thus, the model we constructed is
a two-parameter deformation of the ordinary harmonic oscillator and may serve as a simple
approximation for the description of certain interacting or relativistic quantum systems. The
limit λ/r2 −→ 1 is like a non-relativistic limit.

The method can also be applied to other series representations ofGr , e.g., the principal
series and complementary series [2, 7], and has a direct generalization to higher dimensions,
with the Poincaŕe disc being replaced by the Hermitian symmetric space.
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