A harmonic oscillator on the Poincaré disc and hypercontractivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 305133
(http://iopscience.iop.org/0305-4470/30/14/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:49

Please note that terms and conditions apply.

A harmonic oscillator on the Poincaré disc and hypercontractivity

Shunlong Luo
Institute of Applied Mathematics, Academia Sinica, Beijing, 100080 People's Republic of China

Received 23 May 1996, in final form 9 December 1996

Abstract

Based on the geometry of a Poincaré disc, we construct a relativistic analogue of quantum mechanical harmonic oscillator with a hyperbolic phase space. The Hamiltonian is closely related to the ultraspherical operator and enjoys hypercontractivity. In the large-radius and large-spin limit, we recover the ordinary harmonic oscillator.

1. A harmonic oscillator in Euclidean space

The quantum mechanical harmonic oscillator is essentially the Weyl representation of the Euclidean motion group (or rather, its Lie algebra). In Fock-Bargmann model, it can be described by the quadruple [1]

$$
\left\{H^{2}(C), \partial, \partial^{*}, H\right\}
$$

where
$H^{2}(C)=\left\{f: C \rightarrow C\right.$, holomorphic, $\left.\|f\|^{2}:=\int_{C} f(z) \overline{f(z)} \pi^{-1} \mathrm{e}^{-z \bar{z}} \mathrm{~d} z \mathrm{~d} \bar{z}<\infty\right\}$
$\partial f(z)=\frac{\partial}{\partial z} f(z) \quad \partial^{*} f(z)=z f(z) \quad H f(z)=z \frac{\partial}{\partial z} f(z)$.
They satisfy the canonical commutation relations (CCR)

$$
\left[\partial, \partial^{*}\right]=I \quad[\partial, I]=0 \quad\left[\partial^{*}, I\right]=0
$$

and Wigner commutation relations

$$
[\partial, H]=\partial \quad\left[\partial^{*}, H\right]=-\partial^{*}
$$

The Hamiltonian $H=\partial^{*} \partial=z \partial / \partial z$ is diagonalized by the orthonormal basis $\left\{z^{n} / \sqrt{n!}\right.$: $n \geqslant 0\}$ and has spectrum $\{0,1,2, \ldots\}$. It is remarkable that the semi-group $\left\{\mathrm{e}^{-t H}: t \geqslant 0\right\}$ enjoys hypercontractivity property [11], i.e. for appropriate t (precisely, $\mathrm{e}^{-2 t} \leqslant p / q$), $\mathrm{e}^{-t H}$ is a contraction from $H^{p}(C)$ to $H^{q}(C)$, where for $p \geqslant 1, H^{p}(C)$ is the Banach space of holomorphic L^{p} functions on $\left\{C, \mathrm{~d} v(z)=\pi^{-1} \mathrm{e}^{-z \bar{z}} \mathrm{~d} z \mathrm{~d} \bar{z}\right\}$.

Hypercontractivity plays an imortant role in the study of the Bose field [9, 10], see [3, 4] for surveys of this feature.

2. A harmonic oscillator on the Poincaré disc

We shall introduce a simple quantization of the Poincare disc from the discrete series of $\operatorname{SU}(1,1)$ [2, 7]. Since $S U(1,1)$ is locally isomorphic to $\mathrm{SO}(2,1)$, the Lorentz group which appears in the motion group in $1+2$ spacetime of special relativity, the model thus constructed will have a relativistic nature.

Let $D_{r}=\{z \in C:|z|<r\}$ be the Poincaré disc with radius r; it can be viewed as one sheet of the hyperbolic surface in R^{3} and a Kähler manifold of hyperbolic nature. The geometric symmetry group of D_{r} is

$$
\begin{aligned}
G_{r} & =\left\{g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, C): g^{*}\left(\begin{array}{cc}
1 / r & 0 \\
0 & -r
\end{array}\right) g=\left(\begin{array}{cc}
1 / r & 0 \\
0 & -r
\end{array}\right)\right\} \\
& =A \mathrm{SU}(1,1) A^{-1}
\end{aligned}
$$

where
$\mathrm{SU}(1,1)=\left\{g=\left(\begin{array}{cc}\alpha & \beta \\ \bar{\beta} & \bar{\alpha}\end{array}\right):|\alpha|^{2}-|\beta|^{2}=1\right\} \quad A=\left(\begin{array}{cc}\sqrt{r} & 0 \\ 0 & 1 / \sqrt{r}\end{array}\right)$.
The G_{r} act on D_{r} via the fractional linear transfomation

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

Note that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}\left(\begin{array}{cc}
1 / r & 0 \\
0 & -r
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 / r & 0 \\
0 & -r
\end{array}\right)
$$

is equivalent to

$$
\left(\begin{array}{ll}
a \bar{a} / r-r c \bar{c} & \bar{a} b / r-r \bar{c} d \\
a \bar{b} / r-r c \bar{d} & b \bar{b} / r-r d \bar{d}
\end{array}\right)=\left(\begin{array}{cc}
1 / r & 0 \\
0 & -r
\end{array}\right) .
$$

When $r \rightarrow \infty$, we have $c=0, a \bar{a}=1, d \bar{d}=1$, but

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) z=a d^{-1} z+b d^{-1}
$$

hence G_{r} contracts to $E(C)$ (the Euclidean group on C) when $r \rightarrow \infty$.
The G_{r}-invariant measure on D_{r} is $\mathrm{d} \mu_{r}(z, \bar{z})=\mathrm{d} z \mathrm{~d} \bar{z} /\left(1-z \bar{z} / r^{2}\right)^{2}$. For any $\lambda>1$

$$
\begin{aligned}
\mathrm{d} \mu_{r, \lambda}(z, \bar{z}) & =\frac{\lambda-1}{\pi r^{2}}\left(1-\frac{z \bar{z}}{r^{2}}\right)^{\lambda} \mathrm{d} \mu_{r}(z, \bar{z}) \\
& =\frac{\lambda-1}{\pi r^{2}}\left(1-\frac{z \bar{z}}{r^{2}}\right)^{\lambda-2} \mathrm{~d} z \mathrm{~d} \bar{z}
\end{aligned}
$$

is a probability measure on D_{r}. Since $\mathrm{d} \mu_{r, \lambda} \longrightarrow \mathrm{~d} \nu=\pi^{-1} \mathrm{e}^{-z \bar{z}} \mathrm{~d} z \mathrm{~d} \bar{z}$ when $\lambda / r^{2} \rightarrow 1$ and $r \rightarrow \infty,\left\{D_{r}, \mu_{r, \lambda}\right\}$ may be viewed as a hyperbolic deformation of the one dimensional Gaussian space $\{C, v\}$ which is the phase space of harmonic oscillator of one degree freedom.

For $p \geqslant 1$, let
$H_{\lambda}^{p}\left(D_{r}\right)=\left\{f: D_{r} \rightarrow C\right.$, holomorphic, $\left.\|f\|_{p}^{p}=\int_{D_{r}}|f(z)|^{p} \mathrm{~d} \mu_{r, \lambda}(z, \bar{z})<\infty\right\}$
then $H_{\lambda}^{p}\left(D_{r}\right)$ is a Banach space and $H_{\lambda}^{2}\left(D_{r}\right)$ is a reproducing kernel Hilbert space with kernel $k_{\lambda}(z, w)=\left(1-z \bar{w} / r^{2}\right)^{-\lambda}$, i.e.

$$
f(z)=\int_{D_{r}} f(w) k_{\lambda}(z, w) \mathrm{d} \mu_{r, \lambda}(w, \bar{w}) \quad \forall f \in H_{\lambda}^{2}\left(D_{r}\right) .
$$

An orthonormal basis of $H_{\lambda}^{2}\left(D_{r}\right)$ is

$$
\left\{e_{n}(z)=\sqrt{\frac{\Gamma(n+\lambda)}{n!\Gamma(\lambda)}} \frac{z^{n}}{r^{n}}: n \geqslant 0\right\} .
$$

Let $\lambda>1$, and 2λ be integer. The discrete series of G_{r} is the following irreducible projective unitary representation of G_{r} (cf [7, 8]):
$\left[T_{r, \lambda}(g) f\right](z)=(-c z+a)^{-\lambda} f\left(g^{-1} z\right) \quad g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{r} \quad f \in H_{\lambda}^{2}\left(D_{r}\right)$.
The Lie algebra of G_{r} is generated by
$X_{-}=A\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) A^{-1} \quad X_{0}=A\left(\begin{array}{cc}\mathrm{i} & 0 \\ 0 & -\mathrm{i}\end{array}\right) A^{-1} \quad X_{+}=A\left(\begin{array}{cc}0 & \mathrm{i} \\ -\mathrm{i} & 0\end{array}\right) A^{-1}$
which are essentially Pauli matrices. They are exponentiated to one parameter subgroups of G_{r} as follows:

$$
\begin{aligned}
& \mathrm{e}^{t X_{-}}=\left(\begin{array}{cc}
\cosh t & r \sinh t \\
\sinh t / r & \cosh t
\end{array}\right) \\
& \mathrm{e}^{t X_{0}}=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} t} & 0 \\
0 & \mathrm{e}^{-\mathrm{i} t}
\end{array}\right) \\
& \mathrm{e}^{t X_{+}}=\left(\begin{array}{cc}
\cosh t & \mathrm{i} r \sinh t \\
-\mathrm{i} \sinh t / r & \cosh t
\end{array}\right) .
\end{aligned}
$$

The derived representation of the Lie algebra of G_{r} induced by the discrete series is

$$
\begin{aligned}
\mathrm{d} T_{r, \lambda}\left(X_{-}\right) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{r, \lambda}\left(\mathrm{e}^{t X_{-}}\right)\right|_{t=0}=\frac{\lambda}{r} z+\frac{1}{r} z^{2} \frac{\partial}{\partial z}-r \frac{\partial}{\partial z} \\
\mathrm{~d} T_{r, \lambda}\left(X_{0}\right) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{r, \lambda}\left(\mathrm{e}^{t X_{0}}\right)\right|_{t=0}=-\mathrm{i}\left(\lambda+2 z \frac{\partial}{\partial z}\right) \\
\mathrm{d} T_{r, \lambda}\left(X_{+}\right) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{r, \lambda}\left(\mathrm{e}^{t X_{+}}\right)\right|_{t=0}=-\mathrm{i}\left(\frac{\lambda}{r} z+\frac{1}{r} z^{2} \frac{\partial}{\partial z}+r \frac{\partial}{\partial z}\right) .
\end{aligned}
$$

$Q=\operatorname{id} T_{r, \lambda}\left(X_{+}\right)$is understood as the position observable and $P=\operatorname{id} T_{r, \lambda}\left(X_{-}\right)$as the conjugate momentum observable. Let

$$
A^{*}=\frac{1}{2}(Q-\mathrm{i} P)=\frac{\lambda}{r} z+\frac{1}{r} z^{2} \frac{\partial}{\partial z} \quad A=\frac{1}{2}(Q+\mathrm{i} P)=r \frac{\partial}{\partial z}
$$

then A^{*} and A are mutually adjoint on $H_{\lambda}^{2}\left(D_{r}\right)$ and can be interpreted as creation and annihilation operators respectively. Set

$$
A_{r, \lambda}^{*} \widehat{=} \frac{1}{r} A^{*}=\frac{\lambda}{r^{2}} z+\frac{1}{r^{2}} z^{2} \frac{\partial}{\partial z} \quad A_{r, \lambda} \widehat{=} \frac{1}{r} A=\frac{\partial}{\partial z} \quad N \widehat{=} z \frac{\partial}{\partial z}
$$

then

$$
\left[A_{r, \lambda}, A_{r, \lambda}^{*}\right]=\frac{\lambda}{r^{2}}+\frac{2}{r^{2}} N \quad\left[A_{r, \lambda}, N\right]=A_{r, \lambda} \quad\left[A_{r, \lambda}^{*}, N\right]=-A_{r, \lambda}^{*}
$$

In analogy with $\left\{H^{2}(C), \partial, \partial^{*}, H\right\}$, we may call $\left\{H_{\lambda}^{2}\left(D_{r}\right), A_{r, \lambda}, A_{r, \lambda}^{*}, N\right\}$ the harmonic oscillator on D_{r}. The latter may be viewed as a relativistic analogue of the former, the parameter r playing the role of speed of light. Note that while $\left\{A_{r, \lambda}, A_{r, \lambda}^{*}\right\}$ does not satisfy the CCR, $\left\{A_{r, \lambda}, A_{r, \lambda}^{*}, N\right\}$ satisfies the Wigner commutation relations.

Let

$$
H_{r, \lambda}=A_{r, \lambda}^{*} A_{r, \lambda}=\frac{\lambda}{r^{2}} z \frac{\partial}{\partial z}+\frac{1}{r^{2}} z^{2} \frac{\partial^{2}}{\partial z^{2}}
$$

then

$$
H_{r, \lambda} z^{n}=\frac{1}{r^{2}} n(\lambda+n-1) z^{n} \quad n=0,1, \ldots
$$

$H_{r, \lambda}$ may be interpreted as a Hamiltonian. We shall show that $H_{r, \lambda}$ is closely related with the ultraspherical operator

$$
L_{\alpha}=-\left(1-x^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+(2 \alpha+1) x \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

on $L^{2}\left((-1,1), v_{\alpha}\right)$, where $v_{\alpha}(\mathrm{d} x)=\left(\Gamma(\alpha+1) / \sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)\right)\left(1-x^{2}\right)^{\alpha-1 / 2} \mathrm{~d} x$ is a probability measure on $(-1,1)$. For $\alpha=1, \nu_{1}(\mathrm{~d} x)=(2 / \pi)\left(1-x^{2}\right)^{1 / 2} \mathrm{~d} x$ is the famous Wigner semicircle law occurring in random matrices.

Let $\left\{Y_{n}^{(\alpha)}\right\}$ be the ultraspherical (Gegenbauer) polynomials defined by the generating function

$$
\left(1-2 x z+z^{2}\right)^{-\alpha}=\sum_{n=0}^{\infty} Y_{n}^{(\alpha)}(x) z^{n} \quad|z|<1
$$

Then L_{α} is diagonalized by $\left\{Y_{n}^{(\alpha)}\right\}: L_{\alpha} Y_{n}^{(\alpha)}=n(n+2 \alpha) Y_{n}^{(\alpha)}$. Consequently $H_{1, \lambda}$ and $L_{(\lambda-1) / 2}$ have the same spectrum. In the remainder of this section, we take $r=1, \alpha=$ $(\lambda-1) / 2$.

Note that

$$
\left\{h_{k}^{(\alpha)}(x) \widehat{=} \sqrt{\frac{\Gamma(2 \alpha) k!(k+\alpha)}{\alpha \Gamma(k+2 \alpha)}} Y_{k}^{(\alpha)}(x): k=0,1, \ldots\right\}
$$

constitutes an orthonormal basis for $L^{2}\left((-1,1), \nu_{\lambda}\right)$ (cf [5] or [6]). Define the integral transform

$$
B f(z)=\int_{(-1,1)} p_{\alpha}(z, x) f(x) v_{\alpha}(\mathrm{d} x) \quad f \in L^{2}\left((-1,1), v_{\lambda}\right) \quad z \in D_{1}
$$

where

$$
p_{\alpha}(z, x)=\frac{1}{\sqrt{2}} \frac{1-z^{2}}{\left(1-2 z x+z^{2}\right)^{\alpha+1}}
$$

is the Poisson kernel function (modulo the factor $1 / \sqrt{2}$) (see [6]).
Theorem 1. $\quad B$ is a bijection from $L^{2}\left((-1,1), v_{\alpha}\right)$ onto $H_{\lambda}^{2}\left(D_{1}\right)($ note $\alpha=(\lambda-1) / 2)$. Moreover

$$
\frac{1}{2}\|f\| \leqslant\|B f\| \leqslant\|f\| \quad \forall f \in L^{2}\left((-1,1), v_{\alpha}\right)
$$

and $B h_{k}^{(\alpha)}=\sqrt{(k+\alpha) /(k+2 \alpha)} e_{k}, k=0,1, \ldots . H_{1, \lambda}$ and L_{α} are interwined by B, i.e. $B^{-1} H_{1, \lambda} B=L_{\alpha}$. Here $\|\cdot\|$ denotes the norm on $L^{2}\left((-1,1), v_{\alpha}\right)$ and $H_{\lambda}^{2}\left(D_{1}\right)$.

Proof. Utilizing $z \partial / \partial z$ acting on both sides of

$$
\frac{1}{\left(1-2 z x+z^{2}\right)^{\alpha}}=\sum_{k} Y_{k}^{(\alpha)}(x) z^{k}
$$

leads to

$$
\frac{\alpha\left(2 z x-2 z^{2}\right)}{\left(1-2 z x+z^{2}\right)^{\alpha+1}}=\sum_{k} k Y_{k}^{(\alpha)}(x) z^{k}
$$

Adding $\alpha /\left(1-2 z x+z^{2}\right)^{\alpha}$ to both sides, we obtain

$$
\alpha \frac{1-z^{2}}{\left(1-2 z x+z^{2}\right)^{\alpha+1}}=\sum_{k}(k+\alpha) Y_{k}^{(\alpha)}(x) z^{k}
$$

Hence

$$
\begin{aligned}
p_{\alpha}(z, x) & =\frac{1}{\sqrt{2} \alpha} \sum_{k}(k+\alpha) Y_{k}^{(\alpha)}(x) z^{k} \\
& =\frac{1}{\sqrt{2} \alpha} \sum_{k} \sqrt{\frac{k+\alpha}{k+2 \alpha}} \sqrt{(k+\alpha)(k+2 \alpha)} Y_{k}^{(\alpha)}(x) z^{k} \\
& =\sum_{k} \sqrt{\frac{k+\alpha}{k+2 \alpha}} h_{k}^{(\alpha)}(x) e_{k}(z)
\end{aligned}
$$

Noting that $\left\{h_{k}^{(\alpha)}\right\}$ and $\left\{e_{k}\right\}$ constitute orthonormal bases of $L^{2}\left((-1,1), v_{\alpha}\right)$ and $H_{\lambda}^{2}\left(D_{1}\right)$, respectively, the conclusion easily follows.

Remark. $\quad B$ is reminiscent of the coherent state transform introduced by Bargmann [1] in interwining the Schrödinger and Fock models of the harmonic oscillator. Though B is not unitary, its kernel is the Poisson kernel, which is widely used in complex analysis, in particular in solving Dirichilet problems [6]; hence is quite natural from a mathematical point of view.

3. Hypercontractivity

For $t>0$, let $T_{t}=\mathrm{e}^{-t N}, \quad S_{t}=\mathrm{e}^{-t H_{r, \lambda}}$ be the semigroup generated by N and $H_{r, \lambda}$ respectively. Inspired by the Euclidean case [11], we may expect that T_{t} is a contraction from $H_{\lambda}^{p}\left(D_{r}\right)$ to $H_{\lambda}^{q}\left(D_{r}\right)$ whenever $\mathrm{e}^{-2 t} \leqslant p / q$. Unfortunately, we have not found a proof at present. However, the particular case $p=2, q=4$ (which is usually enough for applications [10]) can easily be proved as follows.
Theorem 2. If $\mathrm{e}^{-2 t} \leqslant 2 / 4$, then $T_{t}: H_{\lambda}^{2}\left(D_{r}\right) \rightarrow H_{\lambda}^{4}\left(D_{r}\right)$ is a contraction, and the maximizer can only be attained at constant functions. Similarly, If $\mathrm{e}^{-2\left(\lambda / r^{2}\right) t} \leqslant 2 / 4$, then $S_{t}: H_{\lambda}^{2}\left(D_{r}\right) \rightarrow H_{\lambda}^{4}\left(D_{r}\right)$ is a contraction, and the maximizer can only be attained at constant functions.

Proof. Clearly, $T_{t} f(z)=f\left(\mathrm{e}^{-t} z\right)$. Note that

$$
\left\{e_{n}(z)=\sqrt{\frac{\Gamma(n+\lambda)}{n!\Gamma(\lambda)}} \frac{z^{n}}{r^{n}}: n \geqslant 0\right\}
$$

is an orthonormal basis of $H_{\lambda}^{2}\left(D_{r}\right)$, if $f \in H_{\lambda}^{2}\left(D_{r}\right)$ has the Fourier decomposition

$$
f(z)=\sum_{n=0}^{\infty} a_{n} e_{n}(z)
$$

then
$\left\|T_{t} f\right\|_{4}^{4}=\int_{D_{r}}\left(T_{t} f(z) \overline{T_{t} f(z)}\right)^{2} \mathrm{~d} \mu_{r, \lambda}(z, \bar{z})$

$$
\begin{aligned}
& =\int_{D_{r}}\left(\sum_{m, n=0}^{\infty} \mathrm{e}^{-(m+n) t} a_{m} \bar{a}_{n} e_{m}(z) \overline{e_{n}(z)}\right)^{2} \mathrm{~d} \mu_{r, \lambda}(z, \bar{z}) \\
& =\int_{D_{r}} \sum_{m, n, j, k=0}^{\infty} \mathrm{e}^{-(m+n+j+k) t} a_{m} a_{j} \overline{a_{n} a_{k}} e_{m}(z) e_{j}(z) \overline{e_{n}(z) e_{k}(z)} \mathrm{d} \mu_{r, \lambda}(z, \bar{z}) \\
& =\sum_{l=0}^{\infty} \mathrm{e}^{-2 l t} \sum_{\substack{m+j=l \\
n+k=l}} a_{m} a_{j} \overline{a_{n} a_{k}}\left(\frac{\Gamma(m+\lambda)}{m!\Gamma(\lambda)} \frac{\Gamma(j+\lambda)}{j!\Gamma(\lambda)} \frac{\Gamma(n+\lambda)}{n!\Gamma(\lambda)} \frac{\Gamma(k+\lambda)}{k!\Gamma(\lambda)}\right)^{1 / 2}
\end{aligned}
$$

$$
\times \frac{l!\Gamma(\lambda)}{\Gamma(l+\lambda)}
$$

$$
=\sum_{l=0}^{\infty} \mathrm{e}^{-2 t l}\left|\sum_{m+j=l} a_{m} a_{j}\left(\frac{l!\Gamma(\lambda)}{\Gamma(l+\lambda)} \frac{\Gamma(m+\lambda)}{m!\Gamma(\lambda)} \frac{\Gamma(j+\lambda)}{j!\Gamma(\lambda)}\right)^{1 / 2}\right|^{2}
$$

$$
\leqslant \sum_{l=0}^{\infty} 2^{-l}\left(\sum_{m+j=l} \frac{l!}{m!j!} \frac{\Gamma(m+\lambda) \Gamma(j+\lambda)}{\Gamma(\lambda) \Gamma(l+\lambda)}\right)\left(\sum_{m+j=l}\left|a_{m} a_{j}\right|^{2}\right)
$$

$$
\leqslant \sum_{l=0}^{\infty} 2^{-l}\left(\sum_{m+j=l} \frac{l!}{m!j!}\right)\left(\sum_{m+j=l}\left|a_{m} a_{j}\right|^{2}\right)
$$

$$
=\|f\|_{2}^{4}
$$

From the calculation, it is clear that $\left\|T_{t} f\right\|_{4}=\|f\|_{2}$ iff f is a constant.
The second statement is proved similarly.

4. The large-radius and large-spin limit

The following correspondences relate the harmonic oscillator on a Euclidean space with that on a Poincaré disc.

Let $r \rightarrow \infty, \lambda \rightarrow \infty$ and $\lambda / r^{2} \rightarrow 1$, then
(1) $D_{r} \longrightarrow C$,
(2) $G_{r} \longrightarrow E(C)$ (Euclidean motion group on C),
(3) $\mathrm{d} \mu_{r} \longrightarrow \mathrm{~d} z \mathrm{~d} \bar{z}$ (Lebesgue measure on C),
(4) $\mathrm{d} \mu_{r, \lambda} \longrightarrow \pi^{-1} \mathrm{e}^{-z \bar{z}} \mathrm{~d} z \mathrm{~d} \bar{z}$ (Gaussian measure on C),
(5) $H_{\lambda}^{2}\left(D_{r}\right) \longrightarrow H^{2}(C)$,
(6) $A_{r, \lambda} \longrightarrow \partial, A_{r, \lambda}^{*} \longrightarrow \partial^{*}, H_{r, \lambda} \longrightarrow H=N$.

5. Discussion

In the construction of a harmonic oscillator on the Poincaré disc, two Hamiltonians naturally arise: one is $N=z \partial / \partial z$, which is formally the same as the free Hamiltonian of the ordinary harmonic oscillator (though they act on different Hilbert spaces); the other is $H_{r, \lambda}$ which is closely related to the ultraspherical operator widely used in special function theory and mathematical physics.

The Poincaré disc is the simplest non-Euclidean space of hyperbolic nature, the radius r may be formally interpreted as a coupling constant (e.g. the speed of light). The parameter λ occurring in the discrete series of $\operatorname{SU}(1,1)$ is the spin. Thus, the model we constructed is a two-parameter deformation of the ordinary harmonic oscillator and may serve as a simple approximation for the description of certain interacting or relativistic quantum systems. The limit $\lambda / r^{2} \longrightarrow 1$ is like a non-relativistic limit.

The method can also be applied to other series representations of G_{r}, e.g., the principal series and complementary series [2, 7], and has a direct generalization to higher dimensions, with the Poincaré disc being replaced by the Hermitian symmetric space.

References

[1] Bargmann V 1961 On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math. 14 187-214
[2] Bargmann V 1947 Irreducible unitary representations of the Lorentz group, Ann. Math. 48 568-640
[3] Davies E B, Simon B and Gross L 1982 Hypercontractivity: a bibligraphic review Ideas and Methods in Quantum and Statistical Physics (Cambridge: Cambridge University Press) pp 37-89
[4] Gross L 1993 Logarithmic Sobolev inequality and contractivity of semigroups Dirichilet Forms (Lecture Notes in Mathematics 1563) ed G Dell'Antonio and U Mosco (Berlin: Springer)
[5] Hua L K 1963 Harmonic Analysis of Functions of Several Complex Varibles in the Classical Domains (Providence, RI: American Mathematical Society)
[6] Hua L K 1982 Starting From The Unit Circle (Berlin: Springer)
[7] Knapp A W 1986 Representation Theory of Semisimple Groups (Princeton, NJ: Princeton University Press)
[8] Perelomov A 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[9] Simon B 1974 The $P(\phi)_{2}$ Euclidean (Quantum) Field (Princeton, NJ: Princeton University Press)
[10] Simon B and Hoghn-Krohn R 1972 Hypercontractivitive semigroup and two dimensional self coupled Bose fields J. Funct. Anal. 9 121-80
[11] Zhou Z F 1991 The contractivity of the free Hamiltonian semigroup in the L_{p} space of entire functions J. Funct. Anal. 96 407-25

